REDInet: a temporal convolutional network-based classifier for A-to-I RNA editing detection harnessing million known events.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Annette Arnold, Adriano Fonzino, Adam Handen, Pietro Luca Mazzacuva, Riccardo Pecori, Graziano Pesole, Ernesto Picardi, Domenico Alessandro Silvestris

Ngôn ngữ: eng

Ký hiệu phân loại: 109 Historical and collected persons treatment of philosophy

Thông tin xuất bản: England : Briefings in bioinformatics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 726432

 A-to-I ribonucleic acid (RNA) editing detection is still a challenging task. Current bioinformatics tools rely on empirical filters and whole genome sequencing or whole exome sequencing data to remove background noise, sequencing errors, and artifacts. Sometimes they make use of cumbersome and time-consuming computational procedures. Here, we present REDInet, a temporal convolutional network-based deep learning algorithm, to profile RNA editing in human RNA sequencing (RNAseq) data. It has been trained on REDIportal RNA editing sites, the largest collection of human A-to-I changes from >
 8000 RNAseq data of the genotype-tissue expression project. REDInet can classify editing events with high accuracy harnessing RNAseq nucleotide frequencies of 101-base windows without the need for coupled genomic data.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH