In biomedical applications, bioadhesives have become a game-changer, offering novel approaches to tissue engineering, surgical adhesion, and wound healing. This comprehensive review paper provides a thorough analysis of bioadhesives and their categorization according to application site and crosslinking process, bonding efficacy, and mechanical characteristics. The use of bioadhesives to stop bleeding and seal leaks is also covered in the review. The article delves into the various crosslinking techniques used in bioadhesives, including chemical, physical, and hybrid approaches. It emphasizes on how these mechanisms control the adhesive's elasticity, durability, and structural integrity. In addition, the review looks at the mechanical strength of bioadhesives, taking important characteristics like shear strength, toughness, elasticity, and tensile strength into account. It is highlighted how important bioadhesives are to the life sciences because they drive innovation and interdisciplinary cooperation, address present healthcare issues, and create new avenues for therapeutic development. The paper also explores some vital characteristics of bioadhesives that, when strategically combined with one another, improve their efficacy and usefulness in a variety of surgical and medical applications. The analysis concludes by examining nature-inspired adhesives, including those based on geckos, mussels, and tannic acid, and their unique bonding mechanisms and potential for use in advanced biomedical applications.