HEGM: Hierarchical Ensemble Generation Model for nuclear reaction cross sections generation.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Changsong Jin, Hanqing Li, Tiejun Li, Bo Yang, Jianmin Zhang, Wei Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 809.008 History and description with respect to kinds of persons

Thông tin xuất bản: England : Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 726780

Accurate and reliable nuclear reaction cross section data are crucial for nuclear reactor design, nuclear energy development, and nuclear safety assessments. Traditional methods for generating nuclear data face significant challenges, including high costs, long time frames, and incomplete coverage. Recent advances in machine learning (ML) offer new opportunities for nuclear data generation, but existing methods struggle with the scarcity of experimental data, limiting their ability to generate high-precision and broadly applicable cross section data. This paper introduces the Hierarchical Ensemble Generation Model (HEGM), a novel AI-driven approach to nuclear reaction cross section generation. HEGM combines transfer learning, meta-learning, prototype networks, and generative adversarial networks to address the challenges of sparse data and improve predictive accuracy. We evaluate HEGM's performance on isotopes
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH