BACKGROUND: Estrogen signaling plays a crucial role in immune regulation and cancer metabolism, yet its impact on T-cell leukemia remains unclear. In hematological malignancies, estrogen receptor (ER) activation may influence metabolic shifts that affect cell survival and proliferation. This study investigates the in vitro effects of 17β-estradiol and estrogen receptor subtype-specific agonists on Jurkat E6.1 T-cell leukemia cells. Purpose To assess how estrogen signaling influences metabolic reprogramming, inflammatory response, and survival pathways in Jurkat E6.1 cells through receptor-dependent and independent mechanisms. METHODS: Jurkat E6.1 cells incubated with different concentrations of 17β-estradiol (10 RESULTS: A shift from glycolysis to oxidative phosphorylation was observed on treatment with 17β-estradiol with significant decline in hexokinase activity and a concomitant increase in activities of pyruvate kinase and citrate synthase. CONCLUSION: 17β-estradiol mediates its effects on Jurkat E6.1 cells in vitro through receptor-subtype dependent and independent mechanisms involving metabolic enzymes (hexokinase, pyruvate kinase, citrate synthase), cytokines (IL-6), nitric oxide, and signaling molecules (p-Akt).