Biofilm formation is considered one of the most important virulence factors for Candida species, which presents an extracellular matrix of polymeric substances that limits the passage of antifungals, leading to fungal resistance. Therefore, the present study investigated the biofilm eradication effect of synthetic chalcones against Candida albicans and Candida tropicalis. Molecular docking studies were conducted to verify the mechanism of action of chalcones on Candida species proteins. The biofilm eradication effect was determined using crystal violet methodology to quantify biomass and Thiazolyl blue tetrazolium bromide (MTT) to verify the influence on metabolic activity. A molecular docking study was also carried out with Candida proteins using the Protein Data Bank repository (https://www.rcsb.org/) and Autodocktools™ software. The results showed that (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnona-1,3,6,8-tetraen-5-one (DB-CNM), and (1E,4E)-1,5-bis(4-methoxyphenyl)penta-1,4-dien-3-one (DB-Anisal) were able to eradicate the biomass of C. albicans CA INCQS 40006 (ATCC 10231), while fluconazole only reduced the biomass at the three tested concentrations (IC