SGLT2i delays c-Myc-induced HCC progression via targeting mTOR.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaotong An, Weixing Du, Jie Jia, Jing Ke, Shan Li, Wanrong Li, Danwen Liu, Zhixin Liu, Zhengpeng Qiu, Xinyang Qu, Huiling Rao, Lin Tian, Jin Xie, Lei You, Juan Yu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Biochimica et biophysica acta. Molecular basis of disease , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727126

BACKGROUND: Hepatocellular carcinoma (HCC) stands as a primary malignant liver tumor characterized by metabolic reprogramming. The oncogene c-Myc exerts substantial influence by driving the transcription of numerous genes. Empagliflozin (EMPA), a sodium-glucose cotransporter-2 inhibitor (SGLT2i), is widely used in the treatment of type 2 diabetes and has recently attracted attention for its potential anti-cancer effects. This study aims to unravel the complex interplay among c-Myc, EMPA, and the mammalian target of rapamycin (mTOR) in HCC development and progression. METHODS: HCC induction in mice utilized high-pressure hydrodynamic transfection of the c-Myc plasmid. QPCR and immunohistochemistry experiments were performed to detect the expression of SGLT2 in HCC tissues. In vivo experiments were conducted to corroborate the upregulation of SGLT2 following c-Myc transfection. In invo and vitro investigations were conducted to evaluate the anti-cancer effects of two SGLT2i: EMPA and canagliflozin (CANA). Network pharmacology, molecular docking analyses, CETSA experiments, and additional western blot experiments were used to reveal EMPA's interaction inhibition with mTOR. RESULTS: The study identified an increase in SGLT2 expression in HCC tissues as a result of c-Myc overexpression. In vitro experiments confirmed the upregulation of SGLT2 following c-Myc transfection. Notably, the administration of SGLT2i effectively curtailed liver cancer progression, and reduced hepatic fat accumulation in mice. EMPA exhibited significant suppression of cell proliferation in c-Myc-transfected cells. In vitro experiments unveiled EMPA's interaction and with inhibition the activation of mTOR. CONCLUSION: Our study highlights EMPA's potential as a therapeutic agent in delaying the development and progression of HCC.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH