Bacteria are becoming progressively more resistant to available antimicrobials. The increased ease and availability of genome sequencing has made it possible to identify putative, novel antimicrobial resistance (AMR) genes bioinformatically. However, no standardized system is available to phenotypically characterize the ability of novel AMR genes in Enterobacteriaceae to confer resistance and impact bacterial physiology and pathogenicity in relation to expression levels. We previously used plasmid pBAD24, which allows for arabinose-inducible expression of heterologous genes, and Escherichia coli Top10 to characterize mobile colistin resistance genes. Based on the pBAD24 backbone, we constructed a new plasmid (pBAD25) that carries a kanamycin resistance gene (instead of an ampicillin resistance gene). We show that our expression system allows for the characterization of five different bla