Self-organizing maps provide new insights into the MixSIAR model for calculating source contributions of sulfate contamination in groundwater.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Qiuling Dang, Yao Ji, Quanli Liu, Yue Liu, Jing Su, Yushan Tian, Shihan Wang, Yanfang Zhao

Ngôn ngữ: eng

Ký hiệu phân loại: 133.594 Types or schools of astrology originating in or associated with a

Thông tin xuất bản: England : Environmental pollution (Barking, Essex : 1987) , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727271

The concentration of sulfate in global groundwater has been observed a significant upward trend in recent years. Excessive sulfate levels contribute to increased groundwater salinity and acidification, thereby posing a threat to the human health and ecological balance. For effective groundwater pollution management and control, accurately quantifying the sources of sulfate pollution remains a challenge. This research integrates the Self-Organizing Maps (SOM) clustering method to enhance the accuracy of the Bayesian isotope mixing model (MixSIAR) in quantifying the contribution rate of groundwater sulfate. During the dry season, sulfate (SO
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH