Cyber-physical system (CPS) is a complex system that integrates cyber, computer system, and physical system. Due to the large amount of information transmitted by CPS in real time, there are physical uncertainty and serious security risks, so how to accurately and effectively realize the accurate control of the CPS becomes a challenging task. In this paper, we comprehensively consider the physical uncertainty and cyber interference that the CPS may face, and then design a Servo Robust Control (SRC). The control design is divided into two phases. In the first phase, a novel control scheme is proposed to ensure that the system can maintain stable performance in the face of physical uncertainty and cyber interference. The second phase is the optimal design of control parameters. Since the selection of control parameters seriously affects the performance of the system, multi-objective parameter optimization methods (non-cooperative game and Stackelberg strategy) are used to study the optimal selection of control parameters. Finally, the proposed SRC is applied to a typical CPS (i.e., autonomous vehicle) for verification. The effectiveness and superiority of this method are verified by comparing with other control methods.