Cognitive flexibility is crucial for volleyball athletes, enabling swift adaptation to dynamic game situations. While blood flow restriction (BFR) training has been suggested to enhance working memory, its specific effects on cognitive flexibility in volleyball players are not well understood. Therefore, this study investigates the effects of BFR combined with low-intensity aerobic exercise on cognitive flexibility in adolescent athletes, with a focus on the role of peripheral catecholamines. A randomized balanced crossover design was employed, involving 20 participants who completed four intervention conditions: sedentary rest, low-intensity aerobic exercise, moderate-intensity aerobic exercise, and BFR with low-intensity aerobic exercise. Post-intervention assessments included measurements of peripheral catecholamine levels and cognitive flexibility, specifically examining shifting costs. The results revealed significant differences in shifting costs across intervention conditions (