Hydrogen production via water electrolysis is essential for achieving carbon-free energy. However, enhancing the performance of these systems, particularly at the electrode level, remains challenging. Photonic sintering (PS) is proposed as a highly effective post-treatment method for electrodes, highlighting the importance of electrode design and optimization. PS significantly enhances the catalytic activity and durability of spinel-type copper-cobalt oxide-based anodes for the oxygen evolution reaction and Pt@C-based cathodes for the hydrogen evolution reaction, which are attributed to structural and chemical modifications, including active site control, optimized surface chemical bonding, improved catalyst-substrate adhesion, and generation of a reduced surface. PS-treated electrodes maintain well-preserved electrochemical active sites and pore structures, which are crucial for activation polarization and mass transport kinetics. Consequently, an anion exchange membrane water electrolysis cell with PS-treated electrodes achieved 89.57% cell efficiency, 3.91 W cm