Optimizing Colocalized Cell Counting Using Automated and Semiautomated Methods.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Shantelle A Graff, John D Heiss, Dragan Maric, Hasita V Nalluri

Ngôn ngữ: eng

Ký hiệu phân loại: 620.11 Engineering materials

Thông tin xuất bản: United States : Neuroinformatics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727702

 Inflammation within the spinal subarachnoid space leads to arachnoid hypercellularity. Multiplex immunohistochemistry (MP-IHC) enables the quantification of immune cells to assess arachnoid inflammation, but manual counting is time-consuming, impractical for large datasets, and prone to operator bias. Although automated colocalization methods exist, many clinicians prefer manual counting due to challenges with diverse cell morphologies and imperfect colocalization. Object-based colocalization analysis (OBCA) tools address these issues, improving accuracy and efficiency. We evaluated semi-automated and automated OBCA techniques for quantifying colocalized immune cells in human arachnoid tissue sections. Both methods demonstrated sufficient reliability across morphologies (P <
  0.0001). While automated counts differed significantly from manual counts, their strong correlation (R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH