Computational memory capacity predicts aging and cognitive decline.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Daniel Brunner, Anna Canal-Garcia, Yu-Wei Chang, Sara Garcia-Ptacek, Emiliano Gómez-Ruiz, Heidi Jacobs, Miia Kivipelto, Kathy Lüdge, Bernhard Mehlig, Mite Mijalkov, Massimiliano Passaretti, Joana B Pereira, Ludvig Storm, Jiawei Sun, Per Svenningsson, Dániel Veréb, Giovanni Volpe, Zhilei Xu, Henrik Zetterberg, Hang Zhao, Blanca Zufiria-Gerbolés

Ngôn ngữ: eng

Ký hiệu phân loại: 691.99 Adhesives and sealants

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727802

Memory is a crucial cognitive function that deteriorates with age. However, this ability is normally assessed using cognitive tests instead of the architecture of brain networks. Here, we use reservoir computing, a recurrent neural network computing paradigm, to assess the linear memory capacities of neural-network reservoirs extracted from brain anatomical connectivity data in a lifespan cohort of 636 individuals. The computational memory capacity emerges as a robust marker of aging, being associated with resting-state functional activity, white matter integrity, locus coeruleus signal intensity, and cognitive performance. We replicate our findings in an independent cohort of 154 young and 72 old individuals. By linking the computational memory capacity of the brain network with cognition, brain function and integrity, our findings open new pathways to employ reservoir computing to investigate aging and age-related disorders.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH