Sparse haplotype-based fine-scale local ancestry inference at scale reveals recent selection on immune responses.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Richard Durbin, Astrid K N Iversen, Daniel J Lawson, Yaoling Yang

Ngôn ngữ: eng

Ký hiệu phân loại: 785.13 *Trios

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727831

Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain insights into genetic function and history as biobanks grow in scale. Here we describe two near-linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler Transform. SparsePainter is a faster, sparse replacement of previous model-based 'chromosome painting' algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further approximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation. The computational efficiency gains of these tools for fine-scale local ancestry inference offer the possibility to analyse large-scale genomic datasets using different approaches. Application to the UK Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many genomic regions associated with immune responses, suggesting avenues for understanding the pathogen-immune system interplay on a historical timescale.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH