A multi-scale microstructure to address the strength-ductility trade off in high strength steel for fusion reactors.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Huw Dawson, David Dye, Peng Gong, Russell Goodall, T W J Kwok, W Mark Rainforth, Yiqiang Wang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727836

Fusion reactor materials for the first wall and blanket must have high strength, be radiation tolerant and be reduced activation (low post-use radioactivity), which has resulted in reduced activation ferritic/martensitic (RAFM) steels. The current steels suffer irradiation-induced hardening and embrittlement and are not adequate for planned commercial fusion reactors. Producing high strength, ductility and toughness is difficult, because inhibiting deformation to produce strength also reduces the amount of work hardening available, and thereby ductility. Here we solve this dichotomy to introduce a high strength and high ductility RAFM steel, produced by a modified thermomechanical process route. A unique multiscale microstructure is developed, comprising nanoscale and microscale ferrite, tempered martensite containing fine subgrains and a high density of nanoscale precipitates. High strength is attributed to the fine grain and subgrain and a higher proportion of metal carbides, while the high ductility results from a high mobile dislocation density in the ferrite, subgrain formation in the tempered martensite, and the bimodal microstructure, which improves ductility without impairing strength.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH