Line-filtering electrochemical capacitors (LFECs) are demonstrating advantages in line filtering over traditional electrolytic capacitors. However, they can only function at no-load or low-power conditions due to the limited high-frequency capacitance resulting from the excessive ionic resistance, despite much progress in electrode materials. Here, we show separators dominate both ion migration and capacitance in LFECs. A 3 μm-thick thread-anchor structured separator is developed, featuring both accelerated ionic transport and reliability, leading to a low ionic resistance of 25 mΩ cm