Integrating multidimensional data analytics for precision diagnosis of chronic low back pain.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Maia Angelova, Luis Becker, Daniel L Belavy, Rebekka Döding, Frederick Junker, Chandan Karmakar, Matthias Pumberger, Sandra Reitmaier, Hendrik Schmidt, Nima Taheri, Sam Vickery

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Scientific reports , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 727895

Low back pain (LBP) is a leading cause of disability worldwide, with up to 25% of cases become chronic (cLBP). Whilst multi-factorial, the relative importance of contributors to cLBP remains unclear. We leveraged a comprehensive multi-dimensional data-set and machine learning-based variable importance selection to identify the most effective modalities for differentiating whether a person has cLBP. The dataset included questionnaire data, clinical and functional assessments, and spino-pelvic magnetic resonance imaging (MRI), encompassing a total of 144 parameters from 1,161 adults with (n = 512) and without cLBP (n = 649). Boruta and random forest were utilised for variable importance selection and cLBP classification respectively. A multimodal model including questionnaire, clinical, and MRI data was the most effective in differentiating people with and without cLBP. From this, the most robust variables (n = 9) were psychosocial factors, neck and hip mobility, as well as lower lumbar disc herniation and degeneration. This finding persisted in an unseen holdout dataset. Beyond demonstrating the importance of a multi-dimensional approach to cLBP, our findings will guide the development of targeted diagnostics and personalized treatment strategies for cLBP patients.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH