Identification and Classification of Images in e-Cigarette-Related Content on TikTok: Unsupervised Machine Learning Image Clustering Approach.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tanvi Anand, Grace Kong, Juhan Lee, Dhiraj Murthy, Rachel Ouellette

Ngôn ngữ: eng

Ký hiệu phân loại: 003.1 System identification

Thông tin xuất bản: England : Substance use & misuse , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 728365

BACKGROUND: Previous studies identified e-cigarette content on popular video and image-based social media platforms such as TikTok. While machine learning approaches have been increasingly used with text-based social media data, image-based analysis such as image-clustering has been rarely used on TikTok. Image clustering can identify underlying patterns and structures across large sets of images, enabling more streamlined distillation and analysis of visual data on TikTok. This study used image-clustering approaches to examine e-cigarette-related images on TikTok. METHODS: We searched for 13 hashtags related to e-cigarettes in November 2021 (e.g., vape, vapelife). We scraped up to 1000 posts per hashtag depending on the number of available posts, for 12,599 posts in total. After randomly selecting 13% of posts and excluding non-English ( RESULTS: We identified CONCLUSIONS: This study using the state-of-the-art image-clustering method successfully identified various e-cigarette-related images on TikTok. This study suggests that novel methodologies can be helpful to tobacco regulatory agencies looking to conduct rapid surveillance of e-cigarette content on social media.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH