The mortality rate of tumor is still very high till now. Circulating tumor cells (CTCs) are the major culprit of high cancer mortality. To improve survival rate of cancer patients, real-time monitoring and quantitative detection of CTCs are of indescribable value. However, due to the extremely small content and heterogeneous characteristics of CTCs, to accurately detect CTCs is still a tremendous challenge in clinical trials. Herein, the photoelectrochemical aptasensing and fluorescence imaging were co-joint to detect MCF-7 cells in whole blood via an inertial separation microfluidic chip. A portable inertial microfluidic chip with a height of 150 μm was designed to separate MCF-7 cells from whole blood samples. Niblue-C6-IMC was used to label and image MCF-7 cells through specifically reacting with COX-2 enzyme from the over-expression on the cellular surface. Subsequently, MCF-7 cells were detected with a Bi