Intranasal administration of stem cell-derived exosome alleviates cognitive impairment against subarachnoid hemorrhage.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Miki Fujimura, Yoichiro Fujioka, Shuho Gotoh, Masahito Kawabori, Kohtarou Konno, Yuji Kuge, Yuki Mizuno, Yo Nakahara, Yusuke Ohba, Masahiko Watanabe, Sho Yamaguchi, Erika Yoshie

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Experimental neurology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 730323

 INTRODUCTION: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain. In this study, we investigate the effects of intranasally administered MSC-derived exosomes in a SAH animal model and elucidate their mode of action. METHODS: Exosomes were isolated from the cell supernatants of amnion-derived MSC. SAH was induced in 8-week-old Sprague-Dawley rats using an autologous blood prechiasmatic cistern injection model. A total of 1.2 × 10 RESULTS: Animals treated with exosomes exhibited significant improvement in cognitive function compared with PBS treated animal. Apoptotic cells and inflammation were reduced for the exosome group in the hippocampal CA1 area and in cortex, resulting in better neuronal cell survival. Blood brain barrier permeability was also preserved in the exosome group. Nuclear imaging revealed that exosomes were primarily transferred to the olfactory nerve and cerebrum
  furthermore, exosomes were also observed in the trigeminal nerve and brainstem, where exosomes were co-localized with microglia and with endothelial cells. In vitro assessment showed that exosome administration ameliorated inflammation and prevented the death of glial cells. CONCLUSIONS: MSC-derived exosomes were successfully transferred into the brain through intranasal administration and alleviated brain damage following SAH.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH