A novel strategy for cytochrome c selective recognition assisted with cucurbit[6]uril by host-guest interaction via N-terminal epitope imprinting and reversible addition-fragmentation chain transfer (RAFT) polymerization was developed. N-terminal nonapeptide of cytochrome c (GI-9) was used as the epitope template to achieve highly selective recognition of cytochrome c. As a common supramolecule in recent years, cucurbit[6]uril can encapsulate the butyrammonium group of lysine residue to capture the peptide and improve the corresponding spatial orientation by the host-guest interaction for GI-9 or cytochrome c recognition. After cucurbit[6]uril modification and epitope immobilization, the imprinted polymer was synthesized by RAFT polymerization with 2-dodecylsulfanylcarbothioylsulfanyl-2-methylpropanoic acid as chain transfer agent. After template removal, the obtained imprinted particles showed good binding ability to GI-9 (20.28 mg g