Comprehensive comparison on different wavelength selection methods using several near-infrared spectral datasets with different dimensionalities.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tao Wang, Lilan Xu, Yong-Huan Yun, Yun Zheng

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 730873

NIR spectroscopy is widely used in chemical analysis, agricultural science, food safety, and other fields, but its high dimensionality and data redundancy bring analytical challenges. This study aims to compare the performance of different wavelength selection methods in NIR spectral datasets with different dimensionalities to provide a reference for researchers. The wavelength selection methods in this study were classified into four categories according to their principles, which are partial least squares (PLS) parameter-based methods, intelligent optimization algorithms (IOA)-based methods, model population analysis (MPA)-based methods and wavelength interval selection (WIS) methods. The performance of the models was compared in terms of R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH