The challenges faced by sludge pyrolysis units, including poor heat transfer efficiency and uneven heating of material groups, significantly hinder the green and low-carbon transformation and sustainable development of sludge treatment. The suspension self-rotation of sludge particles in a cyclone enhances particle heat transfer, thereby improving the pyrolysis process. In this study, we developed a novel method for sludge pyrolysis using Cyclone Suspension Self-Rotation Pyrolysis Reactor (CSSPR). Through numerical simulation and high-speed camera visualization, we analyzed the effects of cyclone cone angle, particle size, and inlet flow rate on particle suspension self-rotation. A systematic investigation was conducted into the mechanisms by which "particle suspension self-rotation" enhances "sludge particle pyrolysis". Consequently, an effective method for utilizing hydrogen-rich gas produced by sludge suspension self-rotation pyrolysis was developed. The results showed that CSSPR with a 9° cone angle achieved optimal suspension autorotation efficiency. Under optimal conditions-sludge particle moisture content of 31.89% and particle suspension rotation rate of 100%, the hydrogen production per unit of sludge reached up to 265.78 mL/g, which is 1.3 times higher than that produced in a static state. Compared to traditional fixed-bed pyrolysis technology, CSSPR demonstrated superior pyrolysis performance, achieving a 155.78 mL/g higher hydrogen yield per unit of sludge. This study offers a novel approach to developing sludge resource pyrolysis technology, thereby providing an effective pathway for addressing climate change and advancing environmental governance.