Acidic nitritation driven by acid-tolerant ammonia-oxidizing bacteria (AOB) has gained wide attention due to its potential in sustainable wastewater and sludge treatment. However, limited knowledge of initiating acidic nitration using conventional activated sludge hindered the wider studies and application of this technology at lab- and field-scale. This study evaluates three strategies for initiating acidic nitritation: a constant low hydraulic retention time (HRT)
an extended initial HRT followed by manual HRT reduction
and pH-controlled HRT. All strategies successfully started acidic nitritation using seed sludge from a local wastewater treatment plant (WWTP) containing undetectable acid-tolerant AOB. Among the three strategies, pH-controlled HRT was the most efficient, with a smoother (minimal fluctuations) and faster (around 30 days) start-up process than the other two strategies. This was attributed to an initial redundancy in ammonia oxidation capacity (i.e. making the proton generation rate caused by ammonium oxidation exceed the alkalinity supply rate by influent), allowing AOB to overcome the activity valley during the transition from neutral to acid pH Level. Using pH as a real-time proxy of AOB activity also leveraged the unique low buffer capacity at acidic pH. Based on these findings, a pilot-scale acidic nitritation reactor treating diluted sidestream wastewater was initiated for the first time using the pH-controlled strategy. The pilot reactor immediately achieved nitrite accumulation and reached the target hydraulic loading rate quicker than the lab reactor, indicating higher influent nitrogen concentration may facilitate NOB suppression and a higher growth rate of acid-tolerant AOB. Based on those results, the versatile start-up strategies using both mainstream or sidestream wastewater were further discussed. Overall, this work greatly expands potential applications of acidic nitritation and paves the way for future field-scale applications.