Study on the synergistic mechanism of fermented Yaomu on Huafengdan in the treatment of ischemic stroke.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Youli Chen, Guo Feng, Caiyao Han, Jinxin Hou, Yun Huang, Jiaxin Jiang, Yan Lei, Wei Li, Mingjin Lin, Gang Liu, Tingting Liu, Kexin Ma, Qian Qin

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Ireland : Journal of ethnopharmacology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 731397

ETHNOPHARMACOLOGICAL RELEVANCE: Huafengdan (HFD), a traditional Chinese medicine from Guizhou, is known for its efficacy in treating ischemic stroke (IS). Yaomu, a principal component of HFD, undergoes fermentation, yet the role of this process in enhancing HFD's therapeutic effects remains unclear. Investigating the synergistic mechanism of fermented Yaomu in HFD's treatment of IS provides a theoretical basis for its clinical application. PURPOSE: This study aimed to explore how Yaomu fermentation enhances HFD's effectiveness and elucidates the underlying mechanisms. METHODS: Differential components of HFD, with and without fermented Yaomu, were identified using UPLC-Q-TOF-MS/MS. Newly added and upregulated components underwent network pharmacological analysis. An IS rat model was established, and neurobehavioral scores, cerebral infarction volumes, and levels of superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) were measured to assess efficacy. Multivariate statistics and pathway analyses were conducted using UPLC-Q-TOF-MS/MS data. A "metabolite-enzyme-reaction-gene" network, integrating pharmacological and metabolomic data, identified key synergistic pathways, which were validated through protein analysis. RESULTS: The UPLC-Q-TOF-MS/MS analysis identified 54 novel components in HFD after Yaomu fermentation and detected 51 differential components between fermented and unfermented HFD, with 15 components downregulated and 36 upregulated. Network pharmacology revealed 53 active synergistic components and 642 component-disease intersection targets. Enrichment analysis of these intersecting targets indicated that Yaomu fermentation might enhance HFD's efficacy by influencing the cAMP signaling pathway and neuroactive ligand-receptor interactions. Pharmacodynamic studies demonstrated that both HFD and HFD containing unfermented Yaomu significantly reduced neurobehavioral scores and infarct volumes in IS models, elevated SOD levels, and decreased MDA, TNF-α, and IL-6 levels. However, the efficacy of HFD was significantly higher than that of HFD containing unfermented Yaomu. Metabolic analysis identified five critical pathways involved in HFD's therapeutic effects on IS, while three pathways were associated with the synergistic impact of Yaomu fermentation on HFD. By integrating network pharmacology and metabolomics, the "metabolite-enzyme-reaction-gene" network was constructed, revealing tryptophan metabolism as the primary synergistic pathway. CONCLUSION: Yaomu fermentation enhances the therapeutic efficacy of HFD in IS treatment, primarily through the tryptophan metabolism pathway.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH