Meta-learning guidance for robust medical image synthesis: Addressing the real-world misalignment and corruptions.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mohammed A Al-Masni, Yoseob Han, Daniel Kim, Dong-Hyun Kim, Taehun Kim, Jaehun Lee, Kanghyun Ryu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 731442

Deep learning-based image synthesis for medical imaging is currently an active research topic with various clinically relevant applications. Recently, methods allowing training with misaligned data have started to emerge, yet current solution lack robustness and cannot handle other corruptions in the dataset. In this work, we propose a solution to this problem for training synthesis network for datasets affected by mis-registration, artifacts, and deformations. Our proposed method consists of three key innovations: meta-learning inspired re-weighting scheme to directly decrease the influence of corrupted instances in a mini-batch by assigning lower weights in the loss function, non-local feature-based loss function, and joint training of image synthesis network together with spatial transformer (STN)-based registration networks with specially designed regularization. Efficacy of our method is validated in a controlled synthetic scenario, as well as public dataset with such corruptions. This work introduces a new framework that may be applicable to challenging scenarios and other more difficult datasets.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH