Data-driven model predictive control for continuous pharmaceutical manufacturing.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Vassilis M Charitopoulos, Nikolaos A Diangelakis, Consuelo Vega-Zambrano

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : International journal of pharmaceutics , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 731565

This study demonstrates that the development of interpretable, data-driven models for pharmaceutical continuous manufacturing is feasible using a machine learning method called Dynamic Mode Decomposition with Control (DMDc). This approach facilitates adoption within Good Manufacturing Practice (GMP)-regulated areas in the pharmaceutical industry. Furthermore, since the pharmaceutical industry needs to be more operationally efficient to be profitable and sustainable, we present a real-time monitoring strategy framework using an interpretable DMDc dynamic model for the design and tuning of a model predictive control (MPC) system for granule size control in a twin-screw granulation process. This model exhibits low computational complexity without requiring first principles knowledge, while effectively capturing nonlinear dynamics of this multiple input multiple output (MIMO) system, with enhanced performance (e.g., R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH