Pulmonary delivery of combination anti-tubercular drugs can prevent emergence of drug resistance and improve therapeutic efficacy. However, several drugs in anti-Tuberculosis combinations possess contrasting physicochemical properties that necessitate precise particle engineering with meticulous design for successful co-delivery. High dose requirements further constrain addition of excipients in the formulation. In this work, a clofazimine shell - isoniazid core combination, excipient-free dry powder inhalable microparticle formulation (CFZ INH DPMs) is designed to extend release and prolong pulmonary retention of the short-half-life INH. Firstly, INH-acetone incompatibility was resolved by employing 3 fluid-nozzle spray drying as conventional spray drying of pure INH yielded large particle sizes (D