Automatic Joint Lesion Detection by enhancing local feature interaction.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Tao He, Yaqi Liu, Tingting Wang, Jianhong Wu, Li Yang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 731982

Recently, deep learning models have demonstrated impressive performance in Automatic Joint Lesion Detection (AJLD), yet balancing accuracy and efficiency remains a significant challenge. This paper focuses on achieving end-to-end lesion detection while improving accuracy to meet clinical requirements. To enhance the overall performance of AJLD, we propose novel modules: Local Attention Feature Fusion (LAFF) and Gaussian Positional Encoding (GPE). These modules are extensively integrated into YOLO, resulting in an improved YOLO model by enhancing Local Feature interaction, named YOLO
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH