Hepatocellular carcinoma (HCC) poses a significant global health burden, with escalating incidence rates and substantial mortality. The predominant etiological factors include liver cirrhosis (LC) and chronic hepatitis B infections (CHB). Surveillance primarily relies on ultrasound and Alpha-fetoprotein (AFP), yet their efficacy, particularly in early HCC detection, is limited. Hence, there is a critical need for accurate non-invasive biomarkers to enhance surveillance and early diagnosis. Extracellular vesicles (EVs) hold promises as stable carriers of signaling molecules, offering potential in tumor diagnosis. Our study developed a novel tidal microfluidic chip for label-free EV isolation, enabling rapid and efficient enrichment from small plasma volumes. Through transcriptome sequencing and single-cell analysis, we identified HMMR and B4GALT2 as promising HCC-associated biomarkers in EVs. In a comprehensive clinical evaluation, bi-mRNAs in EVs exhibited superior diagnostic performance over AFP, particularly in distinguishing early-stage HCC or AFP-negative cases from high-risk individuals (CHB/LC). Notably, our study demonstrated the potential of bi-mRNAs to complement imaging examinations, enabling early detection of HCC lesions. In conclusion, the tidal microfluidic chip offers a practical solution for EV isolation, with the integration of EV-based biomarkers presenting opportunities for improved early detection and management of HCC in clinical practice.