ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) Danggui Buxue Decoction (DBD) was initially recorded in Nei Wai Shang Bian Huo Lun. Known for its immune regulatory and hematopoietic effects, DBD improved the quality of life in non-small-cell lung cancer (NSCLC) patients. Previous research confirmed that DBD can alleviate gemcitabine (GEM) induced myelosuppression. However, the specific metabolic mechanisms underlying this action remain unclear. AIM OF THE STUDY: The aim of our study was to explore the metabolic mechanism of DBD against GEM-induced myelosuppression using non-targeted metabolomics and network pharmacology. Additionally, we aimed to validate our findings through enzyme linked immunosorbent assays (ELISA) and Western blot (WB). MATERIALS AND METHODS: Initially, a GEM-induced myelosuppression model in mice was established by administering GEM (100 mg/kg) twice. Serum, bone marrow nucleated cells (BMNCs) and thymus samples were collected at different time points. Ultra-high-performance liquid chromatography coupled with Q Exactive Orbitrap mass spectrometry (UHPLC-QE-MS/MS) was employed based on non-targeted metabolomics and network pharmacology was conducted to identify the key compounds, core targets and pathways that mediate the effects of DBD. Furthermore, the targets identified through metabolic and network pharmacology were jointly analyzed to select crucial metabolism pathways. Finally, our findings were experimentally validated using ELISA and WB. RESULTS: The results revealed 116 differential metabolites as metabolic biomarkers of DBD in the treatment of GEM-induced myelosuppression. Among these, pathway analysis was conducted on 32 distinct metabolites with KEGG ID, which were subsequently linked to a joint pathway involving 115 targets of DBD-related disease in the PPI network. Pyrimidine synthesis and histidine (HIS) metabolism were identified as the most critical metabolic pathways for DBD in treating GEM-induced myelosuppression. DBD was found to enhance adenosine production through CD73 and additionally regulate TNF-α IL-8 and IL-10. CONCLUSION: In summary, pyrimidine synthesis, HIS metabolism, CD73 and inflammatory factors play significant roles in DBD's alleviation of GEM-induced myelosuppression. In this study, a comprehensive strategy of multi-tissues and multi-time point metabolomics, network pharmacology and pharmacological experiments was used to further illuminate the complex mechanisms of DBD against GEM-induced myelosuppression.