ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive cognitive decline and behavioral impairments in the elderly. Microglia, the resident immune cells of the central nervous system, play a crucial role in modulating the pathological processes associated with AD. Jiajian Shuyu Pills (JJSYP) are frequently employed in the treatment of AD, purportedly by enhancing the physiological functions of human tissues and organs to modulate the immune response. Nevertheless, the underlying mechanisms by which JJSYP exert their therapeutic effects in the context of AD remain inadequately elucidated. AIM OF THE STUDY: This study aimed to assess the effects of JJSYP on cognitive enhancement and the alleviation of neuroinflammation in the treatment of AD, as well as to explore the underlying mechanisms using mouse models. MATERIALS AND METHODS: The components of JJSYP in serum were analyzed using HPLC-Q/TOF-MS. APP/PS1 transgenic mice served as AD models in this investigation. Cognitive function in the AD mice was assessed through the Mirror Water Maze Test and the Novel Object Recognition Test. The quantification of apoptotic hippocampal cells was conducted using Nissl staining and TUNEL staining. Immunofluorescence (IF) and Western blot (WB) analyses were employed to examine microglial activation and the expression of relevant proteins. Transcriptomic sequencing analysis and network pharmacology were administrated to explore the potential mechanisms of JJSYP in AD treatment. Inflammatory cytokine levels in the brain were measured using RT-PCR. RESULTS: A total of 74 absorbed prototype components from JJSYP were identified. JJSYP effectively improved cognitive function and neuroapoptosis in AD model mice by modulating the activation of microglia. The JJSYP intervention alleviated neuroinflammation by suppressing microglial activation and reducing the accumulation of amyloid β-protein. Through transcriptome sequencing and WB verification, 34 differentially expressed genes (DEGs) were identified, including ACKR3, NR1H3 and Adra1a. Following treatment with a high dose of JJSYP, both ACKR3 and NR1H3 showed a significant decrease compared to the model group. Conversely, ADRA1A expression was reduced in model group compared to the control group, but increased following high dose JJSYP treatment. Research involving RNA sequencing and network pharmacology indicated that JJSYP altered the activation of CXCL12/ACKR3 signaling pathways in the hippocampus. CONCLUSIONS: JJSYP exhibits potential anti-Alzheimer's Disease effects and warrants further investigation and development as a prosper treatment for AD.