Prediction of Gene Regulatory Connections with Joint Single-Cell Foundation Models and Graph-Based Learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Sindhura Kommu, Xuan Wang, Yizhi Wang, Yue Wang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 732488

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) data offers unprecedented opportunities to infer gene regulatory networks (GRNs) at a fine-grained resolution, shedding light on cellular phenotypes at the molecular level. However, the high sparsity, noise, and dropout events inherent in scRNA-seq data pose significant challenges for accurate and reliable GRN inference. The rapid growth in experimentally validated transcription factor-DNA binding data (e.g., ChIP-seq) has enabled supervised machine learning methods, which rely on known gene regulatory interactions to learn patterns, and achieve high accuracy in GRN inference by framing it as a gene regulatory link prediction task. This study addresses the gene regulatory link prediction problem by learning informative vectorized representations at the gene level to predict missing regulatory interactions. However, a higher performance of supervised learning methods requires a large amount of known TF-DNA binding data, which is often experimentally expensive and therefore limited in amount. Advances in large-scale pre-training and transfer learning provide a transformative opportunity to address this challenge. In this study, we leverage large-scale pre-trained models, trained on extensive scRNA-seq datasets and known as single-cell foundation models (scFMs). These models are combined with joint graph-based learning to establish a robust foundation for gene regulatory link prediction. RESULTS: We propose scRegNet, a novel and effective framework that leverages scFMs with joint graph-based learning for gene regulatory link prediction. scRegNet achieves state-of-the-art results in comparison with nine baseline methods on seven scRNA-seq benchmark datasets. In addition, scRegNet is more robust than the baseline methods on noisy training data. AVAILABILITY: The source code is available at https://github.com/sindhura-cs/scRegNet .
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH