Improved Microbubble Tracking for Super-Resolution Ultrasound Localization Microscopy using a Bi-Directional Long Short-term Memory Neural Network.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xi Chen, Zhijie Dong, Matthew R Lowerison, YiRang Shin, Pengfei Song, Yike Wang, Qi You

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : bioRxiv : the preprint server for biology , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 732680

Ultrasound localization microscopy (ULM) enabled high-accuracy measurements of microvessel flow beyond the resolution limit of conventional ultrasound imaging by utilizing contrast microbubbles (MBs) as point targets. Robust tracking of MBs is an essential task for fast and high-quality ULM image reconstruction. Existing MB tracking methods suffer from challenging imaging scenarios such as high-density MB distributions, fast blood flow, and complex flow dynamics. Here we present a deep learning-based MB pairing and tracking method based on a bi-directional long short-term memory neural network for ULM. The proposed method integrates multiparametric MB characteristics to facilitate more robust and accurate MB pairing and tracking. The method was validated on a simulation data set, a tissue-mimicking flow phantom, and
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH