Engineering of Genetically Encoded Bright Near-Infrared Fluorescent Voltage Indicator.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Edward S Boyden, Demian Park, Kiryl D Piatkevich, Balint Szabo, Yangdong Wang, Xian Xiao, Aimei Yang, Hanbin Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Switzerland : International journal of molecular sciences , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 732792

Genetically encoded voltage indicators (GEVIs) allow for the cell-type-specific real-time imaging of neuronal membrane potential dynamics, which is essential to understanding neuronal information processing at both cellular and circuit levels. Among GEVIs, near-infrared-shifted GEVIs offer faster kinetics, better tissue penetration, and compatibility with optogenetic tools, enabling all-optical electrophysiology in complex biological contexts. In our previous work, we employed the directed molecular evolution of microbial rhodopsin Archaerhodopsin-3 (Arch-3) in mammalian cells to develop a voltage sensor called Archon1. Archon1 demonstrated excellent membrane localization, signal-to-noise ratio (SNR), sensitivity, kinetics, and photostability, and full compatibility with optogenetic tools. However, Archon1 suffers from low brightness and requires high illumination intensities, which leads to tissue heating and phototoxicity during prolonged imaging. In this study, we aim to improve the brightness of this voltage sensor. We performed random mutation on a bright Archon derivative and identified a novel variant, monArch, which exhibits satisfactory voltage sensitivity (4~5% ΔF/F
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH