Dendritic cell-based microrobots for enhanced systemic antigen-specific immune tolerance.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiaodong Chen, Junbin Gao, Jiamiao Jiang, Haiying Liang, Fei Peng, Hanfeng Qin, Yanzhen Song, Jia Sun, Hao Tian, Yingfeng Tu, Hong Wang, Wenxin Xu, Yicheng Ye, Ruotian Zhang, Ning Zhong

Ngôn ngữ: eng

Ký hiệu phân loại: 711.3 Interstate, state, provincial, county planning

Thông tin xuất bản: Netherlands : Journal of controlled release : official journal of the Controlled Release Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 732849

Current immunotherapeutic approaches for autoimmune disorders primarily rely on the use of generalized immunosuppressive medications. However, most immune drugs and tolerogenic immunomodulators are insufficient on their own to establish antigen-specific immunological tolerance (ASIT). Therefore, steering antigen-presenting cells (APCs) towards a tolerogenic state with minimal risk of broad immune suppression may be an effective approach. In pursuit of enhanced ASIT, magnetic nanoparticles cloaked with an erythrocyte membrane anchored with the model antigen ovalbumin have been successfully developed, allowing for the in vivo conversion of APCs into tolerogenic microrobots that respond to magnetic activation. Actuated by a rotating magnetic field (RMF), the in situ-formed cell-based microrobots can be guided to inflammatory sites, thereby augmenting systemic and local immune tolerance. These tolerogenic microrobots represent an innovative platform for active immunomodulation and provide precise control over the magnitude and direction of immune responses. This breakthrough offers new insights into the therapeutic management of allergies, autoimmune disorders, and the prevention of anti-drug antibodies in biologic therapies.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH