Rapid and accurate prediction of protein homo-oligomer symmetry using Seq2Symm.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Minkyung Baek, David Baker, Bonnie Berger, Gregory R Bowman, Rahul Dodhia, Juan Lavista Ferres, Eric Horvitz, Ian R Humphreys, Meghana Kshirsagar, Artur Meller, Samuel Sledzieski, Yixi Xu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 733134

The majority of proteins must form higher-order assemblies to perform their biological functions, yet few machine learning models can accurately and rapidly predict the symmetry of assemblies involving multiple copies of the same protein chain. Here, we address this gap by finetuning several classes of protein foundation models, to predict homo-oligomer symmetry. Our best model named Seq2Symm, which utilizes ESM2, outperforms existing template-based and deep learning methods achieving an average AUC-PR of 0.47, 0.44 and 0.49 across homo-oligomer symmetries on three held-out test sets compared to 0.24, 0.24 and 0.25 with template-based search. Seq2Symm uses a single sequence as input and can predict at the rate of ~80,000 proteins/hour. We apply this method to 5 proteomes and ~3.5 million unlabeled protein sequences, showing its promise to be used in conjunction with downstream computationally intensive all-atom structure generation methods such as RoseTTAFold2 and AlphaFold2-multimer. Code, datasets, model are available at: https://github.com/microsoft/seq2symm .
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH