Remodeling of lipid-foam prototissues by network-wide tension fluctuations induced by active particles.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Andre A Gu, Neha P Kamat, Arthur Prindle, Jan Steinkühler, Peter Tran, Mehmet Can Uçar

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 733135

Recent advances in the field of bottom-up synthetic biology have led to the development of synthetic cells that mimic some features of real cells, such as division, protein synthesis, or DNA replication. Larger assemblies of synthetic cells may be used to form prototissues. However, existing prototissues are limited by their relatively small lateral dimensions or their lack of remodeling ability. Here, we introduce a lipid-based tissue mimetic that can be easily prepared and functionalized, consisting of a millimeter-sized "lipid-foam" with individual micrometer-sized compartments bound by lipid bilayers. We characterize the structural and mechanical properties of the lipid-foam tissue mimetic, and we demonstrate self-healing capabilities enabled by the fluidity of the lipid bilayers. Upon inclusion of bacteria in the tissue compartments, we observe that the tissue mimetic exhibits network-wide tension fluctuations driven by membrane tension generation by the swimming bacteria. Active tension fluctuations facilitate the fluidization and reorganization of the prototissue, providing a versatile platform for understanding and mimicking biological tissues.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH