BACKGROUND: This study aimed to investigate the role and mechanism of the Akt2 pathway in different stages of anterior disc displacement (ADD)-induced temporomandibular joint osteoarthritis (TMJOA). METHODS: A rat model for TMJOA that simulates anterior disc displacement was established. For inhibit Akt2 expression in subchondral bone, rats were intravenously injected with adeno-associated virus carrying Akt2 shRNA at a titer of 1 × 10 RESULTS: In the rat model of ADD-induced TMJOA, rapid condylar bone loss occurred with increased phosphorylation of Akt2 in subchondral bone macrophages within 1 week post-surgery. At 8 weeks after surgery, abnormal remodeling of subchondral bone and degenerative changes in cartilage were observed. Inhibiting Akt2 reduced condylar bone resorption following ADD surgery while improving condylar bone morphology at 8 weeks post-surgery. Additionally, inhibition of Akt2 alleviated cartilage degeneration characterized by a decreased number of apoptotic chondrocytes, reduced expression of matrix metalloproteinases, and increased collagen type II expression in cartilage tissue. CONCLUSIONS: The Akt2 pathway is activated mainly in subchondral bone macrophages during the early stage of ADD and plays an important role in regulating subchondral bone remodeling. Inhibition of Akt2 could serve as a prophylactic treatment to slow the progression of ADD-induced TMJOA.