Irradiation-responsive PRDM10-DT modulates the angiogenic response in human NSCLC cells in an SP1-dependent manner via the miR-663a/TGF-β1 axis.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Zi Guo, Tom K Hei, Wentao Hu, Hao Huang, Wanshi Li, Jing Nie, Yidan Song, Ying Xu, Miaomiao Zhang, Guangming Zhou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Journal of translational medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 733440

BACKGROUND: Photon radiation has been shown to stimulate the secretion of radioresistant factors from tumor cells, ultimately promoting tumor angiogenesis and metastasis. On the other hand, heavy-ion radiotherapy has been demonstrated to control tumor angiogenesis and metastasis levels. The molecular mechanisms responsible for the different angiogenic responses to photon and heavy-ion irradiation are not fully understood. This study aims to explore the irradiation-responsive genes related to tumor angiogenesis and reveal the regulatory effect. METHODS: In order to clarify the potential regulatory mechanisms of tumor angiogenesis after X-ray or carbon ion (C-ion) irradiation, we performed RNA-sequencing (RNA-seq), as well as bioinformatics, public database analysis, Western blotting, immunohistochemistry, and immunofluorescence. RESULTS: In this study, we identified the long intergenic noncoding RNA PRDM10 divergent transcript (PRDM10-DT), which was responsive to X-rays but not carbon ions. Mechanistically, PRDM10-DT triggers tumor angiogenesis by upregulating the TGF-β1/VEGF signaling pathway through its competitive binding to miR-663a. Additionally, the transcription factor SP1 facilitated the transcription of PRDM10-DT by binding to its promoter region. It's notable that the DNA-binding activity of SP1 was enhanced by reactive oxygen species (ROS). The knockdown of either PRDM10-DT or SP1 effectively inhibited NSCLC angiogenesis and metastasis. CONCLUSION: These results illustrate the proangiogenic function of the PRDM10-DT/miR-663a/TGF-β1 axis and reveal the regulatory role of ROS and SP1 in the upstream response to radiation, with differential ROS production mediating the differential angiogenesis levels after X-ray and C-ion irradiation. Our findings suggest the potential of PRDM10-DT as a nucleic acid biomarker after radiotherapy and that targeting this gene could be a therapeutic strategy to counteract angiogenesis in NSCLC radiotherapy.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH