Antimicrobial resistance (AMR) is a major global health concern, with the rumen microbiota of dairy cows serving as an important reservoir for antibiotic resistance genes (ARGs) and virulence factors (VFs). This study explores the impact of dietary phytochemical supplementation on the rumen resistome and virulome of transition dairy cows using metagenomic sequencing. Naringin supplementation reduced the abundance of ARGs by up to 9.0 % and VFs by up to 7.2 % during the transition period, as indicated by metagenomic analysis (P <
0.05). Clinically high-risk ARGs, including those conferring resistance to beta-lactams (mecA), tetracyclines (tetM, tetO), and aminoglycosides (rmtF), were notably downregulated (P <
0.05). Virulence factors associated with adherence, secretion systems, and toxins were also significantly decreased (P <
0.05). Naringin altered the microbial community structure, particularly reducing the abundance of Proteobacteria, a key phylum harboring ARGs and VFs. Despite inducing increased ARG-VF network complexity, naringin supplementation promoted a less pathogenic microbiome with reduced resistance potential. These findings demonstrate the potential of naringin as a natural dietary strategy to mitigate AMR by reducing the risk of ARG and VF dissemination into the environment, while supporting rumen microbiota stability in transition dairy cows.