Activation of Sirt1 by acetate alleviates silicofibrosis: Contribution of the gut microbiota.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Mingming Han, Qiang Jia, Xixi Li, Cheng Peng, Xuejie Qi, Linlin Sai, Hua Shao, Chongyi Su, Yanhui Wang, Heng Wu, Wenhui Yin, Weiliang Zhang

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Netherlands : Ecotoxicology and environmental safety , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 733743

Silicosis is a prevalent occupational disease marked by progressive pulmonary fibrosis. Despite its significant health burden, the pathogenesis of silicosis remains unclear, and no specific therapeutic drugs are available. In this study, we developed a novel intervention strategy targeting gut microbiota and investigated its underlying mechanisms. Using 16S rRNA gene sequencing, we observed significant gut microbiota dysbiosis in silicosis rats at different times (1-8 weeks), notably characterized by altered relative abundance of Ruminococcus and Lactobacillus. Fecal microbiota transplantation altered the gut microbiota structure of silicosis rats, alleviated silica-induced lung histopathological injury, with LEfSe analysis identifying Bifidobacterium as a potential biomarker. Treatment with Bifidobacterium reduced the level of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and fibrosis markers (collagen III, α-SMA and vimentin) in the lungs of silicosis rats, accompanied with increased serum acetic acid levels. Acetate, a major metabolite of Bifidobacterium, demonstrated similar protective effects against silicosis in this study, suggesting its role as a key mediator of Bifidobacterium action in the lungs. Both Bifidobacterium and acetate significantly upregulated Sirt1 in intestinal and lung tissues, while Sirt1 inhibition diminished their benefits to silicosis. As a widely studied histone deacetylase, Sirt1 was proven to be markedly reduced in the lungs of silicosis rats in this study. EX-527, a potent Sirt1 inhibitor, could worsen silicosis damage by upregulating the level of TGF-β1 and the degree of Smad2/3 acetylation. Our study highlights the efficacy of postbiotics, such as Bifidobacterium and acetate, and identifies Sirt1 as a promising target for silicosis treatment.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH