Calcium deblooming in coronary computed tomography angiography via semantic-oriented generative adversarial network.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Xiao Deng, Luyuan Jin, Yuehua Li, Yijia Xiong, Huiyu Zhao, Wangshu Zhu, Weiwen Zou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: United States : Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 733866

Calcium blooming artifact produced by calcified plaque in coronary computed tomography angiography (CCTA) is a significant contributor to false-positive results for radiologists. Most previous research focused on general noise reduction of CT images, while performance was limited when facing the blooming artifact. To address this problem, we designed an automated and robust semantics-oriented adversarial network that fully exploits the calcified plaques as semantic regions in the CCTA. The semantic features were extracted using a feature extraction module and implemented through a global-local fusion module, a generator with a semantic similarity module, and a matrix discriminator. The effectiveness of our network was validated both on a virtual and a clinical dataset. The clinical dataset consists of 372 CCTA and corresponding coronary angiogram (CAG) results, with the assistance of two cardiac radiologists (with 10 and 21 years of experience) for clinical evaluation. The proposed method effectively reduces artifacts for three major coronary arteries and significantly improves the specificity and positive predictive value for the diagnosis of coronary stenosis.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH