Advanced multi-modal mass spectrometry imaging reveals functional differences of placental villous compartments at microscale resolution.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lisa M Bramer, Kristin E Burnum-Johnson, Thomas L Fillmore, Yuqian Gao, Leena Kadam, Joonhoon Kim, Matthew E Monroe, Ronald J Moore, Leslie Myatt, Daniel Orton, Paul D Piehowski, Dušan Veličković, Marija Veličković, Sarah M Williams, Ruonan Wu, Kevin J Zemaitis

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Nature communications , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 733977

The placenta is a complex and heterogeneous organ that links the mother and fetus, playing a crucial role in nourishing and protecting the fetus throughout pregnancy. Integrative spatial multi-omics approaches can provide a systems-level understanding of molecular changes underlying the mechanisms leading to the histological variations of the placenta during healthy pregnancy and pregnancy complications. Herein, we advance our metabolome-informed proteome imaging (MIPI) workflow to include lipidomic imaging, while also expanding the molecular coverage of metabolomic imaging by incorporating on-tissue chemical derivatization (OTCD). The improved MIPI workflow advances biomedical investigations by leveraging state-of-the-art molecular imaging technologies. Lipidome imaging identifies molecular differences between two morphologically distinct compartments of a placental villous functional unit, syncytiotrophoblast (STB) and villous core. Next, our advanced metabolome imaging maps villous functional units with enriched metabolomic activities related to steroid and lipid metabolism, outlining distinct molecular distributions across morphologically different villous compartments. Complementary proteome imaging on these villous functional units reveals a plethora of fatty acid- and steroid-related enzymes uniquely distributed in STB and villous core compartments. Integration across our advanced MIPI imaging modalities enables the reconstruction of active biological pathways of molecular synthesis and maternal-fetal signaling across morphologically distinct placental villous compartments with micrometer-scale resolution.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH