Mapping global yields of four major crops at 5-minute resolution from 1982 to 2015 using multi-source data and machine learning.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Juan Cao, Jichong Han, Xiangzhong Luo, Yuchuan Luo, Fulu Tao, Jun Xie, Jialu Xu, Zhao Zhang

Ngôn ngữ: eng

Ký hiệu phân loại: 631.456 Strip cropping

Thông tin xuất bản: England : Scientific data , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 734034

Accurate, historical, and continuous global crop yield data are essential for assessing risks to the global food system. However, existing datasets often have limited spatial and temporal resolution. Here, we introduce GlobalCropYield5min, a novel gridded dataset providing crop yield data for major crops - including maize, rice, wheat, and soybean - from 1982 to 2015, with a spatial resolution of 5 arc-minutes. We developed three machine learning (ML) models for each country and crop, using crop statistics from approximately 12,000 administrative units, along with satellite data, climate variables, soil properties, agricultural practices, and climate modes. The optimal predictors and ML model were selected to estimate annual crop yield for each 5 × 5 arc-minute grid cell. Results show good model performance, with R
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH