Transfer learning method for prenatal ultrasound diagnosis of biliary atresia.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lizhu Chen, Hao Ding, Fujiao He, Boxuan Hong, Gang Li, Xian Li, Mingming Shao, Wei Sun, Yu Wang, Zongjie Weng, Chaoran Yang, Zeyu Yang, Jia Yao, Jiao Yin, Zhengwei Yuan, Kaihui Zeng, Mo Zhang, Zhibo Zhang, Zhichao Zhang, Dan Zhao, Luyao Zhou

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : NPJ digital medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 734120

Biliary atresia (BA) is a rare and severe congenital disorder with a significant challenge for prenatal diagnosis. This study, registered at the Chinese Clinical Trial Registry (ChiCTR2200059705), aimed to develop an intelligent model to aid in the prenatal diagnosis of BA. To develop and evaluate this model, fetuses from 20 hospitals across China and infants sourced from public database were collected. The transfer-learning model (TLM) demonstrated superior diagnostic performance compared to the basic deep-learning model, with higher area under the curves of 0.906 (95%CI: 0.872-0.940) vs 0.793 (0.743-0.843), 0.914 (0.875-0.953) vs 0.790 (0.727-0.853), and 0.907 (0.869-0.945) vs 0.880 (0.838-0.922) for the three independent test cohorts. Furthermore, when aided by the TLM, diagnostic accuracy surpassed that of individual sonologists alone. The TLM achieved satisfactory performance in predicting fetal BA, providing a low-cost, easily accessible, and accurate diagnostic tool for this condition, making it an effective aid in clinical practice.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH