Deubiquitination of RIPK3 by OTUB2 potentiates neuronal necroptosis after ischemic stroke.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Min Bao, Zijun Cao, Kangmin Chen, Deyu Deng, Minjie Hu, Jingyong Huang, Jie Liang, Liyan Lou, Fuqi Mei, Jiangyun Shen, Ari Waisman, Xu Wang, Jianzhao Zhang, Zhenhu Zhu

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Germany : EMBO molecular medicine , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 734285

As a common and severe cerebrovascular disease, ischemic stroke casts a significant shadow over global health. Unfortunately, the mechanisms regulating neuronal death in the affected areas remain largely unclear. Here, we found that deletion of the deubiquitinating enzyme Otubain-2 (OTUB2) significantly alleviated ischemia-induced cerebral infarction and neurological deficits, accompanied by a reduction in neuronal loss, glial activation, and neuroinflammation. OTUB2 was predominantly expressed in neurons and its deletion decreased receptor-interacting protein kinase 3 (RIPK3)-mediated neuronal necroptosis. Moreover, OTUB2 increased RIPK3 protein abundance by inhibiting the proteasomal degradation of RIPK3. Mechanistically, OTUB2 removed K48-linked polyubiquitin chains from RIPK3 through its active site C51. Importantly, pharmacological inhibition of OTUB2 alleviated ischemic brain injury in mice and reduced oxygen-glucose deprivation-induced neuronal death in human brain organoids. These results demonstrate that OTUB2 critically regulates ischemic stroke injury by potentiating neuronal necroptosis, suggesting that OTUB2 inhibition may become a potential therapeutic approach for treating ischemic stroke.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH