BACKGROUND: As aquaculture continues to expand globally, diseases caused by Vibrio species are becoming increasingly prevalent. Vibriosis encompasses a range of infections, which can lead to symptoms such as skin lesions, hemorrhaging, and high mortality rates in fish and shellfish, especially in high-density farming systems, resulting in significant economic losses. Simultaneously, the extensive use of antibiotics has fostered the emergence of antibiotic-resistant bacteria, exacerbated disease outbreaks, and complicated control measures. Phage therapy, which leverages bacteriophages as natural antibacterial agents, offers a promising eco-friendly alternative to the antibiotics used in aquaculture. This study aimed to evaluate the potential of two vibriophages for phage therapy in aquaculture. RESULTS: Two virulent vibriophages, vB_VcaP_R24D and vB_VcaP_R25D, were isolated from aquaculture wastewater from seafood markets using Vibrio campbellii LMG 11216 CONCLUSIONS: These biological and genomic characteristics highlight the potential of vB_VcaP_R24D and vB_VcaP_R25D as effective biocontrol agents for mitigating vibriosis in aquaculture. Although this study demonstrates their narrow host range, the possibility of phage infection in other untested hosts cannot be entirely excluded. Furthermore, the findings offer valuable insights for future research on phage-host interactions and the development of phage cocktails to improve disease management in aquaculture systems.