Dedifferentiated fat cells-derived exosomes (DFATs-Exos) loaded in GelMA accelerated diabetic wound healing through Wnt/β-catenin pathway.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Miao Dong, Facheng Li, Xuan Ma

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: England : Stem cell research & therapy , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 734586

BACKGROUND: Diabetic foot ulcers pose significant challenges for clinicians worldwide. Cell-free exosome therapy holds great potential for wound healing. Dedifferentiated fat cells (DFATs) have been used in tissue engineering and regeneration, but there are no reports on the use of DFATs-derived exosomes in diabetic wound repair. OBJECTIVES: This study aims to investigate whether DFATs-Exos accelerated diabetic wound healing and explore its potential mechanism. METHODS: In vitro, DFATs-Exos were harvested from adipose tissue and used to treat endothelial cells (ECs) and fibroblasts. XAV939 was used as a Wnt/β-catenin pathway inhibitor. The biocompatibility of gelatin methacryloyl (GelMA) hydrogel was assessed. In vivo, DFAT-derived exosomes were encapsulated in 10% GelMA hydrogel and applied to a diabetic wound model. Histological analysis and wound closure rates were evaluated. RESULTS: DFATs-Exos promoted angiogenesis in ECs and significantly alleviated the high glucose-induced inhibition of cell proliferation and migration by activating the Wnt/β-catenin pathway. In vivo, compared to DFAT-Exos or GelMA alone, the DFAT-Exos/GelMA combination accelerated wound closure and enhanced collagen maturity. CONCLUSION: The DFAT-Exos/GelMA hydrogel significantly promoted wound healing in a diabetic animal model through activation of the Wnt/β-catenin signaling pathway.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH