A Novel Real-time Phase Prediction Network in EEG Rhythm.

 0 Người đánh giá. Xếp hạng trung bình 0

Tác giả: Lingzhong Fan, Tianzi Jiang, Hao Liu, Zihui Qi, Yihang Wang, Zhengyi Yang, Nianming Zuo

Ngôn ngữ: eng

Ký hiệu phân loại:

Thông tin xuất bản: Singapore : Neuroscience bulletin , 2025

Mô tả vật lý:

Bộ sưu tập: NCBI

ID: 736293

Closed-loop neuromodulation, especially using the phase of the electroencephalography (EEG) rhythm to assess the real-time brain state and optimize the brain stimulation process, is becoming a hot research topic. Because the EEG signal is non-stationary, the commonly used EEG phase-based prediction methods have large variances, which may reduce the accuracy of the phase prediction. In this study, we proposed a machine learning-based EEG phase prediction network, which we call EEG phase prediction network (EPN), to capture the overall rhythm distribution pattern of subjects and map the instantaneous phase directly from the narrow-band EEG data. We verified the performance of EPN on pre-recorded data, simulated EEG data, and a real-time experiment. Compared with widely used state-of-the-art models (optimized multi-layer filter architecture, auto-regress, and educated temporal prediction), EPN achieved the lowest variance and the greatest accuracy. Thus, the EPN model will provide broader applications for EEG phase-based closed-loop neuromodulation.
Tạo bộ sưu tập với mã QR

THƯ VIỆN - TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TP.HCM

ĐT: (028) 36225755 | Email: tt.thuvien@hutech.edu.vn

Copyright @2024 THƯ VIỆN HUTECH